Pig’s nose (Instagram face filter) – Opencv with Python

We’re going to see in this video how to create Instagram Face Filters using Opencv with Python.

Import the libaries and load the detectors (for face and face landmark points).

import cv2
import numpy as np
import dlib
from math import hypot

# Loading Camera and Nose image and Creating mask
cap = cv2.VideoCapture(0)
nose_image = cv2.imread("pig_nose.png")
_, frame = cap.read()
rows, cols, _ = frame.shape
nose_mask = np.zeros((rows, cols), np.uint8)

# Loading Face detector
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

We then run the while loop to get the frames in real time from the camera, we detect the face and face landmark points.

while True:
    _, frame = cap.read()
    gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    faces = detector(frame)
    for face in faces:
        landmarks = predictor(gray_frame, face)

Inside the loop we find the coordinate of the nose, the width and the height.
We define the position when we want to put the new cartoon pig’s nose.

        # Nose coordinates
        top_nose = (landmarks.part(29).x, landmarks.part(29).y)
        center_nose = (landmarks.part(30).x, landmarks.part(30).y)
        left_nose = (landmarks.part(31).x, landmarks.part(31).y)
        right_nose = (landmarks.part(35).x, landmarks.part(35).y)

        nose_width = int(hypot(left_nose[0] - right_nose[0],
                           left_nose[1] - right_nose[1]) * 1.7)
        nose_height = int(nose_width * 0.77)

        # New nose position
        top_left = (int(center_nose[0] - nose_width / 2),
                              int(center_nose[1] - nose_height / 2))
        bottom_right = (int(center_nose[0] + nose_width / 2),
                       int(center_nose[1] + nose_height / 2))

Finally we replace the are of the nose (of our face) with the nose of the pig from the image.

And we display everything on the screen.

        # Adding the new nose
        nose_pig = cv2.resize(nose_image, (nose_width, nose_height))
        nose_pig_gray = cv2.cvtColor(nose_pig, cv2.COLOR_BGR2GRAY)
        _, nose_mask = cv2.threshold(nose_pig_gray, 25, 255, cv2.THRESH_BINARY_INV)

        nose_area = frame[top_left[1]: top_left[1] + nose_height,
                    top_left[0]: top_left[0] + nose_width]
        nose_area_no_nose = cv2.bitwise_and(nose_area, nose_area, mask=nose_mask)
        final_nose = cv2.add(nose_area_no_nose, nose_pig)

        frame[top_left[1]: top_left[1] + nose_height,
                    top_left[0]: top_left[0] + nose_width] = final_nose

        cv2.imshow("Nose area", nose_area)
        cv2.imshow("Nose pig", nose_pig)
        cv2.imshow("final nose", final_nose)

    cv2.imshow("Frame", frame)

    key = cv2.waitKey(1)
    if key == 27:

Learn to build Computer Vision Software easily and efficiently.

This is a FREE Workshop where I'm going to break down the 4 steps that are necessary to build software to detect and track any object.

Sign UP for FREE